
The NIST RS274KT Interpreter

Thomas R. Kramer
Research Associate

Department of Mechanical Engineering

The Catholic University of America
Washington, DC 20064
and
Intelligent Systems Division

and

Frederick Proctor
Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

QC

100

.056 NIST
NO. 5738

1995

NISTIR 5738

The NIST RS274KT Interpreter

Thomas R. Kramer
Research Associate

Department of Mechanical Engineering

The Catholic University of America

Washington, DC 20064
and
Intelligent Systems Division

and

Frederick Proctor
Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

October 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

I

The NIST RS274KT Interpreter

Thomas R. Kramer

Frederick Proctor

Intelligent Systems Division

National Institute of Standards and Technology

Technology Administration

U.S. Department of Commerce
Gaithersburg, Maryland 20899

NISTIR 5738

October 26, 1995

NIST RS274KT Interpreter

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied.

Acknowledgements

Partial funding for the work described in this paper was provided to Catholic University

by the National Institute of Standards and Technology under cooperative agreement

Number 70NANB2H1213.

11

NIST RS274KT Interpreter

CONTENTS

1.0 Introduction 1

1.1 Background 1

1.1.1 Enhanced Machine Controller Project 1

1.1.2 Numerical Control Programming Language RS274 1

1.1.3 The RS274KT Language 1

1.1.4 Previous Work at NIST 1

1.1.5 Current Work at NIST 1

1.2 Overview of RS274KT Code 2

1 .2. 1 Lines, Blocks, Commands, and Words 2

1.2.2 Commands and Machine Modes 2

1.2.3 Modal Groups 2

1 .3 Canonical Machining Functions 3

2.0 Overview of the Interpreter 6

2. 1 Major Characteristics 6

2.1.1 Modes of Use 6

2.1.2 How it Runs 7

2.1.3 Speed 7

2.2 Start-up 8

2.3 Error Handling 10

2.4 Exiting 10

3.0 Building a Stand-Alone Executable 10

4.0 Using the Stand-Alone Interpreter II

4. 1 Invoking the Interpreter 11

4.1.1 Invocation with Keyboard Input 11

4. 1 .2 Invocation with NC File Input 11

4.2 Tool and Setup Files 12

4.3 Keyboard User Interface 12

5.0 INPUT 13

5.1 Overview 13

5.1.1 White Space 13

iii

NIST RS274KT Interpreter

5.1.2 Case Sensitivity 13

5.2 Input Lines 13

5.2.1 Format of a Line 13

5.2.2 Number 13

5.2.3 Line Number 14

5.3 Word Repeats 14

5.4 Word order 14

5.5 Measurement Units 15

5.5.1 Linear units 15

5.5.2 Angular units 15

5.6 Messages and Comments 15

5.6.1 Messages 15

5.6.2 Comments 15

5.7 Programs 15

5 .8 Control Panel Switches 16

5.8.1 Block Delete Switch 16

5.8.2 Other Switches 16

6.0 Capabilities of the RS274KT Interpreter 16

6. 1 Words Recognized 1

6

6.2 Input G Codes and M Codes 17

6.2. 1 G Codes Implemented 18

6.2.2 Differences from the Manual Regarding G Codes 18

6.2.3 Input M Codes Implemented 20

6.3 Codes Not Implemented in the Interpreter 21

7.0 Limitations of the Interpreter 21

References 22

Appendix A Software 23

A. 1 Software Modules and Function Call Hierarchies 23

A.2 Source Code Documentation 28

Appendix B Functional Details 30

B . 1 Error Handling and Exiting 30

NIST RS274KT Interpreter

B.2 Cyclic Operation 3

1

B.3 Tool Change 32

B.4 Tool Length Offsets 33

B.5 Cutter Radius Compensation 33

B.6 Inverse Time Feed Rate 35

Appendix C Transcript of a Session 37

Appendix D Error Messages 38

D. 1 Interpreter Kernel and Interface Input Error Messages 38

D.2 Interpreter Kernel Internal Error Messages 41

D.3 Interpreter Driver Input Error Messages 42

Appendix E Production Rules for Line Grammar and Syntax 43

E. 1 Production Language 43

E.2 Productions 44

E.3 Production Tokens in Terms of Characters 45

Appendix F Setup File Format 46

Appendix G Tool File Format 48

NIST RS274KT Interpreter

NIST RS274KT Interpreter

1 Introduction

The NIST “RS274KT interpreter” is a software system which reads numerical control code in the

“KT” dialect of the RS274 numerical control language and produces calls to a set of canonical

machining functions. The output of the interpreter can be used to drive a Kearney and Trecker 800

4-axis machining center. This report describes the RS274KT interpreter.

1.1 Background

1.1.1 Enhanced Machine Controller Project

The Intelligent Systems Division (ISD) and the Automated Production Technology Division of

the National Institute of Standards and Technology (NIST) are carrying out an Enhanced Machine

Controller (EMC) project. The primary objective of the project is to build a testbed for evaluating

application programming interface standards for open-architecture machine controllers. A
secondary objective is to retrofit a Kearney and Trecker (K&T) 800 4-axis machining center using

the EMC open-architecture control system.

1.1.2 Numerical Control Programming Language RS274

RS274 is a programming language for numerically controlled (NC) machine tools, which has

been used for many years. The most recent standard version of RS274 is RS274-D, which was

completed in 1979. It is described in the document “EIA Standard EIA-274-D” by the Electronic

Industries Association [EIA]. Most NC machine tools can be run using programs written in

RS274. Implementations of the language differ from machine to machine, however, and a

program that runs on one machine probably will not run on one from a different maker.

1.1.3 The RS274KT Language

The RS274KT language is described in the “Part Programming and Operating Manual” [K&T]

for the K&T 800 machine. It dates from the late 1970’s and differs only slightly from the standard

RS274-D. The term “the manual” in this report always means that manual.

1.1.4 Previous Work at NIST

As part of ISD assistance to the program which developed the NGC architecture, ISD prepared a

report “NIST Support to the Next Generation Controller Program: 1991 Final Technical Report,”

[Albus] containing a variety of suggestions. Appendix C to that report proposed three sets of

commands for 3-axis machining, one set for each of three proposed hierarchical control levels.

The suite proposed for the lowest (primitive) control level was implemented in 1993 by the EMC
project as a set of functions in the C programming language. This suite, known in the EMC
project and in this report as the “canonical machining functions,” has now been revised to be

suitable for 4-axis machining.

Also in 1993, the authors developed a software system in the C language for reading machining

commands in the RS274/NGC language (an extension of RS274 proposed by the NGC project)

and outputting canonical machining functions. This was called “the RS274/NGC interpreter.” A
report, “The NIST RS274/NGC Interpreter, Version 1” [Kramer 1] was published in 1994

describing that interpreter.

1.1.5 Current Work at NIST

In 1994, the EMC project, in collaboration with the General Motors Company (GM), undertook to

1

NIST RS274KT Interpreter

retrofit the 4-axis K&T machine mentioned earlier with an EMC controller. This was the driving

force in the revision of the canonical machining functions, and also led NIST to build the

RS274KT interpreter. With the RS274KT interpreter, GM is able to continue to use existing NC
programs on the K&T 800 and to continue to use their existing methods of generating NC
programs for that machine.

Concurrently with the development of the RS274KT interpreter, a second version of the RS274/
NGC interpreter was built which implements about twice as much of the RS274/NGC language as

did the first version. A separate report [Kramer2] has been prepared documenting this new version

of the RS274/NGC interpreter. The EMC controller can easily be reconfigured to use the RS274/

NGC interpreter, should GM wish to use NC programs written in RS274/NGC.

The EMC project decided to have all software be written in a single language, C++, so the source

code for both interpreters is now in C-H-. Almost all of the interpreter source code could be

compiled by an ANSI C compiler, however. Little of the source code is in constructions used in

C++ but not in C, such as data members and member functions.

1.2

Overview of RS274KT Code

The RS274KT language is very close to the standard definition of RS274-D.

1.2.1 Lines, Blocks, Commands, and Words

The RS274KT language is based on lines of code. Each line (also called a “block”) may include

commands to a machine tool to do several different things. A line is terminated by a carriage

return or line feed. Lines of code may be collected in a file to make a program.

A typical line of code consists of an optional line number at the beginning followed by one or

more “words,” possibly interspersed with comments. In this report, a word consists of a letter

followed by a number. A word may either give a command or provide a parameter to a command.

For example, “G1 X3” is a valid line of code with two words. “Gl” is a command meaning “move

in a straight line at the programmed feed rate,” and “X3” provides a parameter value (the value of

X should be 3 at the end of the move) to the command. Most RS274KT commands start with

either G or M (for miscellaneous). The words for these commands are called “G codes” and “M
codes.” In addition to words, lines of code may include other combinations of characters. The

legal combinations of characters for the RS274KT language are presented in Appendix E.

1 .2.2 Commands and Machine Modes

In RS274KT, many G codes andM codes cause the machine to change from one mode to another,

and the mode stays active until some other command changes it implicitly or explicitly [K&T,

pages 4.3 - 4.5]. Such commands are called “modal”. For example, the coolant commands are

modal. If coolant is turned on, it stays on until it is explicitly turned off. The G codes for motion

are also modal. If a Gl (straight move) command is given on one line, it will be executed again on

the next line unless a command is given specifying a different motion (or some other command
which implicitly cancels Gl is given).

“Non-modal” codes have effect only on the lines on which they occur. For example, M25 (bypass

offsets) is non-modal.

1.2.3 Modal Groups

Modal commands are arranged in sets called “modal groups”, and only one member of a modal

2

NIST RS274KT Interpreter

group may be in force at any given time. In general, a modal group contains commands for which
it is logically impossible for two members to be in effect at the same time — like measure in

inches vs. measure in millimeters. A machine tool may be in many modes, at the same time, with

one mode from each modal group being in effect. The modal groups used in the interpreter are

shown in Table 1

.

For several modal groups, it is usual to provide that when the machine is ready to accept

commands, one member of the group must be in effect. Controller manufacturers must set default

values for those modal groups. When a machine is turned on or otherwise re-initialized, the

default values are automatically in effect.

The modal groups for G codes are:

group 1 = {GO, Gl, G2, G3, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} - motion

group 2 = {G17, G18, G19} - plane selection

group 3 = {G90, G91 }
- distance mode

group 5 = {G93, G94} - spindle speed mode
group 6 = { G70, G7 1 }

- units

group 7 = {G40, G41, G42} - cutter diameter compensation

group 10 = (G98, G99} - axis offsets

The modal groups for M codes are:

group 2 = {M26, M27} - B-axis clamping

group 4 = (MO, Ml, M2, M30, M60} - stopping

group 6 = {M6} - tool change

group 7 = {M3, M4, M5} - spindle turning

group 8 = {M7, M8, M9} - coolant

group 9 = {M48, M49 }
- feed and speed override switch bypass

Table 1. Modal Groups

1.3 Canonical Machining Functions

The EMC canonical machining functions called by the interpreter are given in Table 2 and are

described in more detail in a separate report, “Canonical Functions for 4-Axis Machining”

[Proctor]. That report includes additional canonical machining functions which are not used by

the interpreter but may be in future versions. The names of the functions explain roughly what

they do. The canonical machining commands are atomic commands. Each command produces a

single action.

RS274 commands, on the other hand, include two types: those for which a single RS274

command corresponds exactly to a canonical command, and those for which a single RS274

command will be decomposed into several canonical commands (possibly dozens). Things like

“move in a straight line” or “turn flood coolant on” are of the first type. Things like “turn all

coolant off’ or “run a peck drilling cycle” are of the second type.

The canonical commands were devised with three objectives in mind. First, all the functionality of

3

NIST RS274KT Interpreter

the K&T 800 machine had to be covered by the commands; for any function the machine can

perform, there has to be a way tell it to do that function. Second, it was desired that it be possible

to use readily available commercial motion control boards from various vendors to carry out those

canonical commands which call for motion, with roughly a one-to-one correspondence between a

canonical motion command and a command a commercial board recognizes. Third, it must be

possible to interpret RS274KT commands into canonical commands. The first and third objectives

are closely related; if one of them can be reached, the other will probably also have been reached.

Two sets of definitions for the canonical machining functions have been written, and either set can

be linked into the interpreter. The first set is used for direct control of the machining center.

Executing a function from this set causes a command message to be generated. When this

command message is executed, the machine’s actuators are activated. The second set is used for

testing or for writing a command file that can be used later. Executing a function from the second

set causes a line of text containing the command to be written to standard output or to a file.

4

NIST RS274KT Interpreter

Representation SET_ORIGIN_OFFSETS (double x, double y, double z, double b)

USE_LENGTH_UNITS (CANON_UNITS units)

Free Space

Motion

STRAIGHT_TRAVERSE (double x, double y, double z, int b_turn,

double b_position)

Machining

Attributes

SELECT_PLANE (CANON_PLANE plane)

SET_FEED_RATE (double rate)

SET_FEED_REFERENCE (CANON_FEED_REFERENCE reference)

START_SPEED_FEED_SYNCH()
STOP_SPEED_FEED_SYNCH()

Machining

Functions

ARC_FEED (double first_end, double second_end,

double first_axis, double second_axis, int rotation,

double axis_end_point, int b_tum, double b_position)

STRAIGHT_FEED (double x, double y, double z, int b_tum,

double b_position)

DWELL (double seconds)

Spindle

Functions

SET_SPINDLE_SPEED (double r)

START_SPINDLE_CLOCKWISE ()

START_SPINDLE_COUNTERCLOCKWISE ()

STOP_SPINDLE_TURNING ()

ORIENT.SPINDLE (double orientation, CANON_DIRECTION direction)

Tool Functions CHANGE_TOOL (int slot)

SELECT_TOOL (int i)

USE_TOOL_LENGTH_OFFSET (double offset)

Miscellaneous

Functions

CLAMP_AXIS(CANON_AXIS axis)

COMMENT (char * s)

DISABLE_FEED_OVERRIDE()
DISABLE_SPEED_OVERRIDE()
ENABLE_FEED_OVERRIDE()
ENABLE_SPEED_OVERRIDE()
FLOOD.OFF 0
FLOOD.ON 0
MESSAGE (char * s)

MIST_OFF 0
MIST_ON 0
PALLET_SHUTTLE()
lJNCLAMP_AXIS(CANON_AXIS axis)

Program
Functions

OPTIONAL_PROGRAM_STOP ()

program_end 0
PROGRAM_STOP ()

Table 2. Canonical Machining Functions Called By Interpreter

Function arguments are written in ANSI C style. All functions return nothing.

5

NIST RS274KT Interpreter

2 Overview of the Interpreter

2.1 Major Characteristics

2.1.1 Modes of Use

The interpreter runs integrated with the EMC control system or as a stand-alone system. Most of

the software is the same in the two cases. Software details are given in Appendix A. The reader

may find it helpful to look at Figure 1 in Appendix A at this point.

2. 1.1.1 Integrated with EMC Control System

In the EMC control system, the interpreter is used both to interpret NC programs (from files) and

to interpret individual commands entered using the manual data input (MDI) capability of the

control system. When running an NC program, the control system tells the interpreter when to

read another line of code from the program and when to execute the last line that was read. When
using MDI input, the controller sends the interpreter a line of code it gets from the user interface

with a single command that tells the interpreter to read the line and execute the line.

The interpreter does not control machine action directly. Rather, the interpreter calls canonical

functions which generate messages which are passed back to the control system, and the control

system decides what to do with the messages. In normal operation the top level of the control

system decides whether each message should be sent to its motion control subordinate or to its

discrete I/O subordinate and sends the message at an appropriate time.

If an error occurs, the user is sent an error message. If an NC program is being translated,

execution of the program stops at the line where the error occurred, and it is not possible to restart

the program from that line. To use a program which causes an interpreter error, the program must

be edited to remove the error, and the program must be restarted at the beginning. The user must

determine if the partially cut workpiece can be saved or whether it must be scrapped, and must

consider the effect of re-running the portion of the program before the error occurred in making

this decision. Of course the user has the option of running a revised program which deletes the

code that ran successfully at the beginning of the original program.

2. 1.1.2 Stand-alone

In stand-alone mode, the interpreter has two input modes: keyboard (interactive) mode and file

(batch) mode. In the interactive mode, the user types lines of RS274KT code at the keyboard. In

the batch mode, the interpreter reads lines of code from a file.

Only the set of canonical machining functions which prints text has been linked into the stand-

alone interpreter, so the output is always text. The output is printed to the computer terminal by

default, but may be redirected to a file. In general, an output file is useful only if input is taken

from a file and errors do not occur during interpretation.

Error handling differs between the interactive mode and the batch mode. In interactive mode, the

interpreter always continues after an error. In batch mode the user has an option when starting the

interpreter of telling the interpreter to try to keep going after an error or having the interpreter stop

interpreting if an error occurs (which is the default behavior).

The stand-alone mode is valuable because it allows a user to pre-test an NC program without

having to run it on the machine controller itself. Any computer for which the stand-alone

6

NIST RS274KT Interpreter

interpreter can be compiled can be used to pre-test NC programs. Pre-tests are conclusive tests

because the interpreter runs exactly the same way in the stand-alone mode as it does integrated

with the control system.

Section 4. 1 explains how to use the various options available in stand-alone mode.

2.1.2 How it Runs

Once initialized, the interpreter runs in various ways (depending on which of the modes of use

just described is being used) but in all of them, the basic operation that gets repeated is a two-step

process:

1 . Get a line of RS274KT code and read it into memory, building an internal representation of

the meaning of the entire line.

2. Call one or more canonical machining functions which will do what the line says to do.

The interpreter maintains a model of the machine while it is interpreting and uses the model in

determining what canonical machining functions to call and what their parameters should be.

Initialization of the model is performed when the interpreter starts up.

2.1.3 Speed

2. 1.3.1 Stand-alone Speed

Using an input test file for machining a semicircular arc back and forth 1000 times in a row (for a

total of 2000 lines), running on a SUN SPARCstation 2, the stand-alone interpreter wrote an

output file in 4 seconds. A second file with 3600 small arcs lying on a helix took 9 seconds. A
third file with 2000 straight line segments took 5 seconds. These three tests show a rate of 400 to

500 lines per second for the stand-alone interpreter on a Sun SPARC station 2 computer.

Running on a 486 PC using the Lynx operating system, the stand-alone interpreter handled the

same three test files in 12 seconds, 23 seconds, and 13 seconds, about a third as fast as on the Sun

SPARC. The output from the two computers was byte-by-byte identical for the first two input

programs. For the third program there were about 100 numbers which differed in the last decimal

place, apparently because of different conventions for rounding used by the two computers when

the digit after the last decimal place to be kept is a 5.

Tests with other types of programs show similar results. Thus, it is clear that using the stand-alone

system for pre-testing NC programs takes little time.

2. 1.3.2 Interpreter Speed in the Integrated System

When the interpreter is being used integrated with the EMC control system, there are relatively

few situations in which a modem PC would be challenged, since the tool path prescribed by a line

found in a typical program will rarely take less than a tenth of a second to cut, while interpreting

that line will rarely take more than a hundredth of a second. Thus, for most NC programs, the

interpreter speed will not be a significant factor.

There is one known class of program for which interpreter speed may be a significant factor. This

class is those programs which include many consecutive short lines or arcs (say 0. 1 millimeter

long each). This type of program is produced by many NC program post-processors for following

complex contours approximately. At 1000 millimeters per minute feed rate (a realistic value), a

2000-line file should mn in 12 seconds. Tests of this type of program on the integrated system

7

NIST RS274KT Interpreter

have not yet been conducted, but the results just mentioned for the stand-alone interpreter running

on a PC indicate that even without all the other tasks the integrated system must perform, this

speed challenges the interpreter. The interpreter has not been optimized for speed. If it is decided

more speed is required during execution, that may be accomplished by various types of pre-

processing which are not difficult to implement.

2.2 Start-up

When the interpreter starts up, before accepting any input, it sets up a model that includes data

about itself, data about the setup of the machine to be controlled, and data about the tools which

are in the tool carousel of the machine. The interpreter’s data about itself (such as whether tool

radius compensation is on) has default values. The data about the machine and the tools is

obtained in two different ways depending upon whether the interpreter is integrated or stand-

alone.

In the integrated mode, machine setup data for the model is obtained by the interpreter from the

(real) control system database. This data (such as axis positions) has been read from the sensors

on the machine and represents the actual state of the machine. Also in this mode, the data about

tools is obtained from the information that has been input by an operator.

In the stand-alone interpreter, machine setup data and tool data for the model is obtained (using

exactly the same queries) from a stub version of the database of the control system which has

default values for the data the interpreter needs. The default data does not necessarily represent

the actual state of the machine or the tools in the carousel.

In the stand-alone interpreter, all the machine setup data and the tool data may be replaced by data

from files designated by the user. In this way the stand-alone interpreter can be given data

representing different conditions of the machine and tools; the data in the files may be actual or

hypothetical. When the interpreter starts up in the stand-alone mode, the user is prompted to

provide the name of a setup file and the name of a tool file. In both cases, if a name is provided,

the data from the file is used and if a name is not provided, the data already loaded is used. The

formats for setup files and tool files are described in Appendix F and Appendix G, respectively,

with examples of both types of file.

Default setup data is shown in Table 3. Where G codes and M codes are involved, the settings are

as provided at start-up in [K&T, page 4.3], except that GO (rapid traverse) is not active at start-up

in the interpreter.

Default tool data is shown in Table 4. The default tool table is not intended to be useful for

preparing or testing any real NC programs. Data has been placed in the default tool table so the

interpreter can be used without having to prepare a tool table. The default tool table has the tool

length offset and the tool diameter as zero for all slots except slots 1 and 2.

The values in the tool table are used as though they are in the units (inches or millimeters)

currently in use; the tool table values are not adjusted automatically if units are changed. This is

not explicit in the manual but corresponds to the way the Kearney and Trecker machine works

with its original controller.

8

NIST RS274KT Interpreter

Item Setting RS274KT code Internal/External

axis_offset_b 0.0 G99 I

axis_offset_x 0.0 G99 I

axis_offset_y 0.0 G99 I

axis_offset_z 0.0 G99 I

block delete switch off console switch E
b-axis clamp on E
b-axis automatic clamping on M26 I

cuiTent_b 0.0 E
cu]Tent_x 0.0 E
cuiTent_y 0.0 E
curTent_z 0.0 E
cutter radius compensation off G40 I

distance mode absolute G90 I

feed mode units per minute G94 I

feed override enabled M48 I

feed rate 15 I

flood coolant off M9 E
length units millimeters G71 I

mist coolant off G9 E
motion mode 80 G80 I

plane for arcs XY plane G17 E
slot in use 1 E
slot selected 1 E
slot for length offset 1 I

slot for radius comp 1 I

speed_feed_mode independent I

speed override enabled M48 I

spindle speed 0.0 E
spindle turning not turning M5 E
tool length offset 0.0 I

traverse rate 100 E

Table 3. Default Setup Data for the Interpreter

9

NIST RS274KT Interpreter

Slot ID Length Diameter

1 1 2.0 1.0

2 2 1.0 0.2

Table 4. Default Tool Data for the Interpreter

All other slots have the id, length, and diameter set to zero.

2.3 Error Handling

The interpreter performs a great deal of checking as it runs. If an error is found during any check,

the interpreter prints a message describing the error. Behavior after printing an error message

depends upon the mode in which the interpreter is being used and was described in Section 2.1.1.

The error messages which may be printed by the interpreter are listed in Appendix D. They are

self-explanatory.

Further details of error handling are given in Appendix A.

2.4 Exiting

When using keyboard input, the interpreter exits only if it reads a line with the one word “quit”.

Most variations of “quit” are valid, e.g., “Q ul t”. In any other mode, the interpreter exits when it

reads a line with an M2 (program exit) or M30 (program exit with tape rewind and pallet shuttle)

command on it. The rest of the line is executed before the interpreter exits. If there are more lines

in the file following the line which causes a program exit, they are ignored.

As stated earlier, in some modes which use file input, the interpreter will also exit if a line is read

that causes an error. It is an error for the file to come to an end without an M2 or M30 command.

3 Building a Stand-Alone Executable

On a SUN SPARCstation 2, an executable file for the stand-alone interpreter may be built from

source code in about a minute, as described below. The same procedure should work on any

computer mnning a Unix operating system and having the standard C-h- libraries. On computers

running other operating systems, compilation should be similarly easy, provided the standard C-I-+

libraries are available.

To make an executable, six source code files must be placed in the same directory along with the

Makefile shown in Table 5 below. The source code files are:

canon.cc

canon.hh

rs274kt.cc

rs274kt.hh

driver.cc

nml_emc.hh

The first two files are the function definitions and header file for the canonical machining

functions. The version of canon.cc which prints function calls is used with the stand-alone

10

NIST RS274KT Interpreter

interpreter. The second two are the function definitions and header file for the interpreter kernel

and interface functions. The last two are the function definitions and header file needed for the

stand-alone interpreter that are not needed in the integrated interpreter.

An executable file named “rs274kt” is built in the same directory by giving the command:
make rs274kt.

In the Makefile, we are using the Gnu compiler, “g++.” Any other C-h- compiler may be

substituted for g-t-f.

canon.o: canon.cc canon.hh nml_emc.hh rs274kt.hh

g-H- -c -V -g -O canon.cc

rs274kt.o: rs274kt.cc canon.hh nml_emc.hh rs274kt.hh

g-H- -c -V -g -O rs274kt.cc

driver.o: driver.cc canon.hh nml_emc.hh rs274kt.hh

g-H- -c -V -g -O driver.cc

rs274kt: rs274kt.o canon.o driver.o

g-H- -V -o rs274kt rs274kt.o canon.o driver.o -Im

Table 5. Makefile for Stand-Alone Interpreter

4 Using the Stand-Alone Interpreter

4.1 Invoking the Interpreter

As mentioned earlier, the stand-alone interpreter may be used with either keyboard input or file

input. This section tells how to do that. The user must press the “return” key after each response;

the return key presses are not printed here.

This section describes several input files. If any input file named by the user cannot be opened, the

interpreter prints a message to that effect and quits.

This section refers to redirecting output. The methods described here work with both the SunOS

and LynxOS and may be expected to work on other Unix-like systems. Other forms of redirection

are possible.

4.1.1 Invocation with Keyboard Input

The interpreter is invoked with keyboard input by giving the command;

rs274kt

4.1.2 Invocation with NC File Input

4. 1.2.1 Invocation to Stop After an Error

To use NC file input and stop if an error is encountered, invoke the interpreter with a command of

the form:

rs274ktmpM/Jilename

11

NIST RS274KT Interpreter

where input_filename is the name of the NC input file. With this invocation, normal printed output

from the interpreter (everything but error messages) appears on stdout, which is normally the

terminal on which the command was invoked. Printed output may be usefully redirected to an

output file by giving a command of the form:

rs274kt inputJilename > outputJilename

where output_filename is the name the output file should have. The interpreter will create this file

if it does not exist; if it does exist, it will be overwritten.

4. 1.2.2 Invocation to Continue After an Error

To use file input and attempt to continue if an error is encountered, invoke the interpreter with a

command of the form:

rs274kt inputJilename continue

As above, normal printed output from the interpreter (everything but error messages) appears on

stdout. Error messages are printed to stderr, which is also normally the terminal from which the

interpreter was invoked. Printed output (excluding error messages) may be redirected to an output

file by giving a command of the form:

rs274kt inputJilename continue > outputJlename

If there are errors during interpretation, any input line which causes an error will not be

interpreted, and the output file may be incorrect on any line after the last line which was output

before the first error occurred.

4.2 Tool and Setup Files

As soon as the interpreter is invoked by any of the methods just described, it prompts the user to

enter the name of a tool file. The user may enter a tool file name, as follows:

name of tool file => toolJilejname

or the user may press only the return key, and the interpreter will use the default tool data.

The interpreter next prompts the user for the name of a setup file. The user may enter a setup file

name as follows:

name of setup file => setupJle_name

or the user may press only the return key, and the interpreter will use the default setup data.

The format of setup files and tool files is described in Appendix F and Appendix G, respectively.

4.3 Keyboard User Interface

The interpreter has a simple line-based user interface for when it is used with keyboard input. The

normal pattern of use, after start-up, is a read-execute cycle with four steps:

1. The interpreter prints the prompt READ =>

2. The user enters a line of RS274KT code at the keyboard and hits the carriage return button.

3. The interpreter reads the line and prints the prompt EXEC <-

4. The user enters a semicolon and hits the carriage return button, and the line is interpreted.

12

i

NIST RS274KT Interpreter

Steps 3 and 4 have been included in the interface to give the user a chance to check the line just

typed. If anything but a semicolon is entered in step 4, the line is not interpreted. This will protect

the user who accidentally hits the return button during step 2.

The user interface provides no capability to edit ahead, undo, or anything else involving more than

the current line.

A transcript of a short session with the interpreter using keyboard input is shown in Appendix C.

5 INPUT

5.1 Overview

In general, allowable inputs are as described in the manual. [EIA], the standard for RS274-D is

used where the manual is silent, but [EIA] has something to say.

5.1.1 White Space

The manual says nothing about space characters or tab characters. [EIA, page 6, last line] allows

spaces and tabs anywhere and provides that they should be “ignored by control.” The interpreter

allows spaces and tabs anywhere on a line of code and behaves the same as it would if they were

not there. This makes some strange-looking input legal. The line “gOx +0. 12 34y 7” is equivalent

to “gO x+0.1234 y7”, for example.

Blank lines are allowed in the input by the interpreter. They are ignored.

5.1.2 Case Sensitivity

The manual and [EIA] do not explicitly discuss character case. The interpreter assumes input is

case insensitive, i.e., any letter may be in upper or lower case without changing the meaning of a

line.

5.2 Input Lines

To make the specification of an allowable line of code precise, we have defined it in a production

language (Wirth Syntax Notation) in Appendix E. The description here is intended to be

consistent with the appendix. In order that the definition in the appendix not be unwieldy, many

constraints imposed by the interpreter are omitted from that appendix. The list of error messages

in Appendix D indicates all of the additional constraints.

5.2.1 Format of a Line

A word is defined to be a letter followed by a number. A permissible line of input consists of the

following, in order, with the restriction that there is a maximum (currently 256) to the number of

characters allowed on a line.

1 . an optional block delete character, which is a slash / .

2. an optional line number.

3. any number of segments, where a segment is a word or a comment.

4. an end of line character.

5.2.2 Number

The manual is not clear regarding what a valid number is. In some places, such as [K&T, page

3.7], it is stated that numbers must have decimal points and have different required formats

13

NIST RS274KT Interpreter

depending on whether inches or millimeters are being used. In many of the examples in the

manual there are no decimal points at all. Programs being used by GM use decimal points. [EIA,

page 3] does describe decimal point programming. It allows all unnecessary zeros to be included

or suppressed and decimal points to be omitted if whole numbers are used.

The interpreter uses the following rules regarding numbers. In these rules a digit is a single

character between 0 and 9.

• A number consists of (i) an optional plus or minus sign, followed by (ii) zero to many
digits, followed, possibly, by (iii) one decimal point, followed by (iv) zero to many
digits— provided that there is at least one digit somewhere in the number.

• Numbers may have any number of digits, subject to the limitation on line length.

• A non-zero number with no sign as the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after the

decimal point and the last non-zero digit) zeros are allowed but not required. A number written

with initial or trailing zeros will have the same value when it is read as if the extra zeros were not

there.

Every number used in the RS274KT language is either an unsigned integer or a decimal number.

An unsigned integer may not have a plus or minus sign in front of it or a decimal point in it; a

decimal number may.

Different types of numbers may be required in different types of words. For example, in G words

and M words, only unsigned integers between 0 and 99 are allowed.

5.2.3 Line Number

A line number is the letter N followed by an unsigned integer between 0 and 99999. This is a

slight variation from [K&T, page 4.1], which allows numbers from 1 to 999999, but does not

allow selecting a line number greater than 99999 while editing on the machine console.

5.3 Word Repeats

[K&T, page 4.4 and elsewhere] specifies that up to four G words and fourM words may appear on

a line, but is not explicit about words beginning with other letters. The interpreter uses the

following rules;

• A line may have zero to four G words. Two G words from the same modal group may
not appear on the same line.

• A line may have zero to fourM words. Two M words from the same modal group may
not appear on the same line.

• For all other legal letters, a line may have only one word beginning with that letter.

5.4 Word order

The manual does not specify word order explicitly or implicitly. The interpreter allows words

starting with any letter except N (which denotes a line number and must be first) to occur in any

order. Execution of the line will be the same regardless of the order.

14

5.5

Measurement Units
5.5.1

Linear units

NIST RS274KT Interpreter

[K&T page 3.7 and elsewhere] specifies that either “inch” or “metric” units may be used and

makes it clear that the metric length units are millimeters. Linear units are selected by

programming G70 for inch or G71 for metric. One or the other is automatically to be chosen when
the system starts up; which one is a matter of choice [K&T, page 4.3]. The stand-alone interpreter

starts up using millimeters, as shown in Table 3.

5.5.2

Angular units

[K&T, page 3.7 and elsewhere] specifies using degrees for measuring angles, so the interpreter

assumes angular dimensions in the input are given in degrees.

5.6 Messages and Comments

[K&T, page 4.2] prescribes using parentheses to give messages, though the section is unclear. It

does not specify whether nested pairs of parentheses are allowed, whether things other than

messages are allowed inside parentheses, or whether a line which contains a left parenthesis can

end without a right parenthesis somewhere after the left parenthesis. In the interpreter, a left

parenthesis can occur anywhere on a line where the start of a word is allowed. There must be a

closing right parenthesis on the line. A second left parenthesis may not occur before the closing

right parenthesis (so nested parentheses are illegal).

In the interpreter, it is allowed to have more than one set of parentheses on a line (like) (this), but

if this is done, only the last one will be processed as described below. All the others will be read

and their format will be checked, but they will be ignored thereafter.

5.6.1 Messages

If “MSG,” appears after a left parenthesis before any other printing characters, the rest of the

characters before the right parenthesis are considered to be a message, and the “message”

canonical function is called to deliver the message to the operator. Variants of “MSG,” which

include white space and lower case characters are allowed.

5.6.2 Comments

If the characters inside parentheses are not a message, as just described, then everything inside the

parentheses is treated as a comment, and the “comment” canonical function is called. Comments

do not cause the machine to do anything.

5.7 Programs

By “program” we mean a sequence of lines of RS274KT NC code (at least two and perhaps as

many as several thousand) that are intended to be executed one after another. The sequence of

lines is normally kept in a file.

The stand-alone interpreter has no concept of a program when it is running with keyboard input, it

only understands lines. When it runs with input from a file, it expects the file to be an NC
program. The interpreter checks that the first line of the file contains nothing but a percent sign

(%), and it exits when a line with M2 or M30 is executed, since they mean end of program.

In the integrated interpreter, programs are recognized and handled by the user interface of the

EMC control system.

15

NIST RS274KT Interpreter

The use of as the only character on the first line of a program does not appear to be required

in the manual, but is standard practice at GM, so it is a required feature in the interpreter.

5.8 Control Panel Switches

The EMC controller is sensitive to all switches on the control panel. The interpreter needs to

know the setting of only one switch, block delete. The other switches are handled by the EMC
controller without the interpreter knowing what the settings are.

5.8.1 Block Delete Switch

If the block delete switch is on, the interpreter skips lines which start with a slash (the block delete

character). Internally, the interpreter reads the line but does not try to figure out what it means. If

the switch is off, lines starting with a slash are processed as though the slash was not there.

When the interpreter is used as part of the EMC control system, information about the block

delete switch setting is passed to the interpreter during the initialization of executing a program.

The interpreter does not check again, so changing the setting of that switch during the execution

of a program will not change the way the program is executed.

When the interpreter is used stand-alone, a block delete switch setting may be included in the

setup file. The default setting of the block delete switch is off, as shown in Table 3. The default is

used when a setting is not specified in a setup file.

5.8.2 Other Switches

The speed or feed override switches on the control panel let the operator specify that the actual

feed rate or spindle speed used in machining should be some percentage of the programmed rate.

The EMC control system reacts to the setting of the speed or feed override switches on the control

panel, when those switches are enabled. It does this, however, without the interpreter ever

knowing their settings. As mentioned elsewhere, the interpreter will interpret M48 and M49
commands which enable or disable the switches, but it does not need to know what their settings

are to do that. In Table 3 there is no representation of the settings of these switches.

The optional program stop switch on the machine console works as follows. If this switch is on

and an input line contains an Ml code, program execution is supposed to stop until the cycle start

button is pushed. The interpreter interprets an Ml on an input line into an

OPTIONAL_PROGRAM_STOP canonical command in the output, as described elsewhere in this

report. The interpreter itself has no knowledge of the setting of the optional program stop switch.

In Table 3 there is no representation of the setting of this switch. It is up to the rest of the EMC
control system to check the optional stop switch when the optional_program_stop canonical

command is executed and either stop or not.

6 Capabilities of the RS274KT Interpreter

The interpreter implements almost all of the RS274KT language. The current version includes the

following capabilities. Any capability not explicitly included is excluded. Trying to use any

excluded capability in an NC program will cause an error in the interpreter.

6.1 Words Recognized

The interpreter recognizes words beginning with the letters shown in Table 6. The meanings of the

16

NIST RS274KT Interpreter

letters are as given in [K&T, page 2.8 and elsewhere].

Letter Meaning

B b-axis of machine

D tool radius compensation number

E incremental feed distance with G83 or G87
F feedrate or dwell time

G general function— see Section 6.2

I x-axis center (or offset) for arcs with axis parallel to y-axis or z-axis

pitch for a helical arc with axis parallel to x-axis

J y-axis center (or offset) for arcs with axis parallel to x-axis or x-axis

pitch for a helical arc with axis parallel to y-axis

K z-axis center (or offset) for arcs with axis parallel to x-axis or x-axis

pitch for a helical arc with axis parallel to z-axis

M miscellaneous function— see Section 6.2

N line number

P tool length compensation slot number

R canned cycle plane

S spindle speed

T tool selection

X x-axis of machine

Y y-axis of machine

Z z-axis of machine

Table 6. Letters Recognized by the Interpreter

6.2 Input G Codes and M Codes

This section describes the specific G codes and M codes which have been implemented in the

interpreter. Where the implementation differs from what is described in the manual, the

differences are described. G and M codes given in the manual which have not been implemented

are listed.

Decisions on what to implement and what not to implement were based on:

• the capabilities of the K&T 800 machine at GM
• examination of 24 GM programs for the machine provided to NIST by GM
• discussions with NC programmers at GM

The interpreter is intended to implement all the G and M codes which are currently used in K&T
800 programs at GM. The effect of any program prepared using the current GM methods and

conventions should be the same when the program is run using the EMC controller (which uses

the interpreter) as if the original K&T controller were used. The interpreter can interpret

completely all 24 programs provided by GM (except where there are errors in the programs).

17

NIST RS274KT Interpreter

6.2. 1 G Codes Implemented

The G codes shown in Table 7 have been implemented. Unless noted otherwise in Section 6.2.2,

each G code is implemented as described in the manual.

G Code Meaning

GO rapid positioning

G1 linear interpolation

G2 circular/helical interpolation (clockwise)

G3 circular/helical interpolation (counterclockwise)

G4 dwell

G17 xy plane selection

G18 xz plane selection

G19 yz plane selection

G40 cancel cutter diameter compensation

G41 start cutter diameter compensation left

G42 start cutter diameter compensation right

G70 inch system selection

G71 millimeter system selection

G80 cancel motion mode (including any canned cycle)

G81 drilling canned cycle

G82 spotfacing canned cycle

G83 chip breaking canned cycle

G84 tapping canned cycle

G85 reaming canned cycle

G86 boring canned cycle

G87 deep hole drilling canned cycle

G88 boring (keylock) canned cycle

G89 feed in, dwell, feed out canned cycle

G90 absolute distance mode
G91 incremental distance mode
G93 inverse time feed mode
G94 feed per minute mode
G98 insert axis offset

G99 cancel axis offset

Table 7. G Codes Implemented in the Interpreter

6.2.2 Differences from the Manual Regarding G Codes

This section describes where the implementation of G codes differs from the manual. If a

difference simply adds capability, so that it has no effect on the operation of existing programs, it

is marked “EXTENSION”.

6.2.2. 1 GOandGl

GO and G1 both mean to move in a straight line from the current location to the end point. In most

18

NIST RS274KT Interpreter

dialects of RS-274, GO is used for rapid traverse (not cutting) and G1 is used for cutting. In the

manual, the meanings of GO and G1 and differ from what is usual. The only difference between

GO and G1 in the manual is that in GO mode, the K&T controller does not start dealing with the

next motion (if there is one) “until the axes have positioned to within 0.001 inch of the end point”

[K&T, page 3.1] whereas in G1 mode “the control does not wait” [K&T, page 3.2]. With both GO
and Gl, the manual uses the convention that if the feed rate is set to zero, this means to move at

rapid traverse rate [K&T, page 3.18].

The way GM programs use GO and Gl is as close to the usual way as feasible under the rules in

the manual. That is, rapid traverse is done only in GO mode (with the feedrate set to zero), and

straight line cutting is done only using Gl, with the feed rate set to some positive value.

The interpreter differs from the manual regarding GO and Gl in the following ways.

a. GO runs only with the feed rate set to zero, and does a rapid traverse in that case. If GO is

programmed without the feed rate set to zero, an error occurs.

b. GO does not cause the system to wait until the axes have positioned to within 0.001 inch of

the end point before dealing with the next motion.

c. Gl does not cause rapid traverse when the feed rate is zero. If Gl is programmed when the

feed rate is zero, an error occurs.

d. GO and Gl are in the same modal group as all other motion. [K&T, page 4.4] puts Gl in

same modal group as GO only, and there is a separate modal group for other motion.

6.2.2.2 G2 and G3 Circular or Helical Motion

a. EXTENSION: A b-axis value is legal with G2 and G3. It is illegal in [K&T, page 3.29].

b. EXTENSION: A G2 or G3 move including z-axis motion is legal with cutter length

compensation on. It is illegal in [K&T, page 3.29].

c. EXTENSION: Pitch words (k-word when XY-plane selected, i-word when YZ-plane

selected, j-word when XZ-plane selected) are optional for helical arcs of 360 degrees or

less. Pitch words are required for all helical arcs in [K&T, page 3.58]. If a pitch word is

used, the length of the given axial move must be the same as the length which may be

calculated from knowing the pitch and the final radial location, for some number of turns

around the helix.

d. G2 and G3 are in the same modal group as all other motion. [K&T, page 4.4] puts G2 and

G3 in a modal group by themselves.

6.2.2.3 G40 Cutter Diameter Compensation Cancel

a. EXTENSION: The ramp-off can be done along an arc. This is illegal in [K&T, page 4.24].

b. EXTENSION: The G40 does not need to appear on a line which includes an x or y word. It

does in [K&T, page 4.24].

6.2.2.4 G41 and G42 Cutter Diameter Compensation

The kind of comer rounding done by the implementation (excluding ramp-on and ramp-off) is the

same as what is shown in many diagrams in the manual [K&T, pages 4.25 - 4.61]. The manual

does not describe the algorithm used by the current K&T controller, however, and it is possible

there are differences.

a. The ramp-on [K&T, page 4.21] and ramp-off [K&T, page 4.22] paths might differ from

those described in the manual [K&T, page 4.21]. It is not possible to tell from the manual

19

NIST RS274KT Interpreter

what the actual ramp-on and ramp-off algorithms are. In the manual, it looks like the

ramp-on path segment may make a sharp comer with the following path segment in

some cases where the implementation will make the transition smooth (no change in

direction at the junction).

b. A D value may not be specified on a line which does not have a G41 or a G42. This is

allowed in the manual [K&T, page 4.24].

c. EXTENSION: The ramp-on can be done along an arc. This is illegal in the manual [K&T,

page 4.24].

d. EXTENSION: The G41 or G42 does not need to occur on a line with an X or Y value. It

does in the manual [K&T, page 4.24].

e. It is not possible to switch to a different D value while compensation is on; an error

message will be given. It is possible in the manual [K&T, page 4.25].

f. It is not possible to switch directly from compensation left to compensation right; an error

message will be given. It is possible in the manual [K&T, page 4,24].

g. It is not possible to command the tool to fit into a comer into which it will not fit; an error

message will be given. It is possible but strongly discouraged in the manual [K&T, pages

4.26-4.30].

h. It is illegal to use GO with compensation on. It is legal in the manual [K&T, page 4.24].

6.2.2.5 G88 Boring Cycle (Keylock)

a. Although G88 is included in the implementation, the keylock feature is not currently used.

The spindle is actively oriented, instead.

6.2.2.6 G90 and G91, Absolute vs. Incremental length

a. EXTENSION: In the implementation, it is legal to switch from G90 to G91 or vice versa

while tool length compensation is on. This is illegal in the manual [K&T, page 4.19].

6 .22.1 G93 Inverse (Time) Feed Rate Coding

a. Inverse time feed rate coding cannot be used with cutter diameter compensation. This is an

unlikely combination, anyway.

6.2.2.8 G98 and G99 Offset Control

a. Offsets cannot be changed while cutter radius compensation is active or while a canned

cycle is active.

6.2.3 Input M Codes Implemented

The following M codes are implemented as described in the manual, with two exceptions:

a. Tool changes [K&T, pages 4-9, 4-10] are performed as described in Appendix B.3.

b. In the case of M25, both GO and G91 must be in effect when M25 is used.

20

NIST RS274KT Interpreter

M Code Meaning

MO program stop

Ml optional program stop

M2 program end

M3 turn spindle clockwise

M4 turn spindle counterclockwise

M5 stop spindle turning

M6 tool change

M7 mist coolant on

M8 flood coolant on

M9 mist and flood coolant off

M25 bypass offsets

M26 enable automatic b-axis clamping

M27 disable automatic b-axis clamping

M30 program end, pallet shuttle, and reset

M48 enable speed and feed overrides

M49 disable speed and feed overrides

M60 pallet shuttle and program stop

Table 8. M Codes Implemented in the Interpreter

6.3 Codes Not Implemented in the Interpreter

The following G codes listed in the manual are not implemented: G38, G50, G51.

The following M codes listed in the manual are not implemented: M19, M23, M24, M40, M57,

M58, M59.

The H (horsepower) code is not implemented.

7 Limitations of the Interpreter

This section describes significant limitations of the interpreter.

The codes listed in the manual which are not implemented are listed just above in Section 6.3.

The interpreter does not save input lines. This means that RS274KT programs cannot be written

using the interpreter, which is of little importance. It also means that there is no record of what the

user did, which is more important.

21

NIST RS274KT Interpreter

[Albus]

[EIA]

[K&T]

[Kramer 1]

[Kramer2]

[Proctor]

References

Albus, James S; et al; NIST Support to the Next Generation Controller

Program: 1991 Final Technical Report, NISTDR. 4888; National Institute of

Standards and Technology, Gaithersburg, MD; July 1992

Electronic Industries Association; EIA Standard E1A-274-D Interchangeable

Variable Block Data Format for Positioning, Contouring, and Contouring/

Positioning Numerically Controlled Machines', Electronic Industries

Association; Washington, DC; February 1979

Kearney and Trecker Co.; Part Programming and Operating Manual, KT/CNC
Control, Type C; Pub 687D; Kearney and Trecker Corp.; 1980

Kramer, Thomas R.; Proctor, Frederick M.; Michaloski, John L.; The NIST
RS274/NGC Interpreter, Version 1; NISTIR 5416; National Institute of

Standards and Technology, Gaithersburg, MD; April 1994

Kramer, Thomas R.; Proctor, Frederick M.; The NISTRS274/NGC Interpreter,

Version 2; NISTIR 5739; National Institute of Standards and Technology,

Gaithersburg, MD; October 1995

Proctor, Frederick M.; Kramer, Thomas R.;Michaloski, John L.; Canonical

Functions for 4-Axis Machining', NISTIR in draft; National Institute of

Standards and Technology, Gaithersburg, MD; May 1995

22

NIST RS274KT Interpreter

Appendix A Software

This appendix describes the software for the interpreter. The appendix is intended for users and

programmers who might want to modify the software or simply understand it.

A.l Software Modules and Function Call Hierarchies

The interpreter is written in C++. The program files are:

1. rs274kt.cc and its header file, rs274kt.hh— 7177 lines

2. canon.cc and its header file, canon.hh— 788 lines

3. driver.cc and its header file, nml_emc.hh— 1048 lines

Two methods of using the interpreter, stand-alone and integrated with the rest of EMC, are

provided. The use of program files differs between the two methods. Some code is common to

both, and some code differs.

The organization of the software by module and file is shown in Figure 1. In the figure, arrows

show the direction of function calls. The stand-alone interpreter uses the files shown in the left

and middle columns. The integrated interpreter uses the files shown in the right and middle

columns. The stand-alone files are arranged so that they mimic the arrangement of the integrated

interpreter. The mimicry is so that running the stand-alone provides as good a test as possible of

running integrated. If there were no integrated interpreter, the EMC emulation functions and data

shown in the left column would not be needed.

In terms of lines of code, excluding the EMC files shown in the right column, about two thirds of

the code is in the kernel functions.

The rs274kt.cc file has two parts, kernel functions and interface functions. In the file itself the

interface functions are given after the kernel functions. As shown in Figure 1, kernel functions are

called only by interface functions, while interface functions are called by and call back to either

EMC functions (if integrated) or driver functions (in the stand-alone). Both kernel functions and

interface functions call canonical functions.

The driver.cc file also has two parts. In the file itself, the driver functions are given after the EMC
emulation functions. The driver functions provide the user interface, and the EMC emulation

functions provide an EMC-like environment for modeling data about the machine tool and

controller settings.

Different versions of the canonical functions are used in the stand-alone and integrated

interpreters. The canonical functions used with the stand-alone simply print themselves, while

those used integrated send messages describing themselves. The same header file is used with

both versions of the functions.

The source code is assembled automatically from pre-source code. The pre-source code is used

for both the RS274KT interpreter and the RS274/NGC interpreter. In the pre-source code, each

function is kept in a separate file, and there are three separate directories.

1 . software common to both interpreters, which includes three subdirectories with all of the

driver, all of the interface functions, and about a third of the kernel. There are many #if

defined sections within individual functions in this directory for differences between the

two interpreters.

23

NIST RS274KT Interpreter

2. header files, utilities and functions for the RS274KT interpreter only.

3. header files, utilities and functions for the RS274/NGC interpreter only.

When the pre-source code is assembled into source code, the defined sections are preprocessed

so that only the appropriate sections appear in the source code. Figure 1 shows the source code

setup, not the pre-source.

rs274kt.cc

interface

functions

kernel

functions

rs274kt.hh

canon.hh

STAND-ALONE
ONLY

nml emc.hhstub

driver.cc

driver

functions

EMC emulation

functions & data

canon.cc

(print self)

INTEGRATED
1 ONLY

nml emc.hli

EMC files

canon.cc

(send message)

Figure 1. Interpreter Software

Function call hierarchies are shown in the following four figures. Figure 2 and Figure 3 show

kernel function calls. All kernel functions appear on one or both of the two figures. Figure 4

shows the function calls from the interface functions. Figure 5 shows the hierarchy of function

calls from the driver.

24

NIST RS274KT Interpreter

read_text close_and_clowncase

read_Iine check_items

— init_block;

— read_items

check_g_codes
check_m_codes
check_other_codes

read_line_nutnber -

read_one_item

— utility_enhance_block

I utility_in_range

read_integer_unsigned

read b

read_spindle_speed

read tool id

read real

read_comment
read_d read.

read_delta read.

read_f read.

read_g read.

read_i read.

readj read.

read_k read.

read_m read.

read_r read.— read.— read.

read_tool_length_offset— read.

read_x read.

read_y read.

read z read

.integer_unsigned

real

real

.integer_unsigned

real

real

real

.integer_unsigned

real

real

.integer.

.integer_unsigned

.real

.real

real

unsigned

Figure 2. Interpreter Kernel Function Call Hierarchy

(all but execute_block)

This shows the hierarchy of function calls from interpreter kernel functions read_text and

read_line defined in rs274kt.cc to other kernel functions (excluding utility_error_number and

nml_log_error - see text). Canonical functions calls are not shown. The hierarchy of calls from

execute_block is shown in Figure 3.

25

NIST RS274KT Interpreter

execute_block

convert_feed_mode
— convert_comment

convert feed rate

— convert_g convert_axis_offsets
I— utility_in_range

— convert_cutter_conipensation

I

convert_cutter_compensation_off
I— convert_cutter_compensation_on

— convert_distance_mode
— convert_dwell

— convert_length_units

— convert_motion
— convert_arc — convert_arc_compl -|— arc_data_comp

I

— arc_data_pitch

utility_find_tum

— convert_speed
— convert_stop

— convert m —

convert_arc_comp2 arc_data

— convert_arc_xy

— convert_arc_yz

convert_arc_zx

— convert_cycle •

convert,

convert.

— convert_tool_length_offset

— convert tool select

— convert_straight

.set_plane

.tool_change

utility_find_ends
— convert_cycle_g81
— convert_cycle_g82
— convert_cycle_g83
— convert_cycle_g84
— convert_cycle_g85
— convert_cycle_g86
— convert_cycle_g87
— convert_cycle_g88— convert_cycle_g89
— convert_straight_compl

convert_straight_comp2

utility_find_ends

utility_find_straight_length

— arc_data_pitch
I— utility_find_tum

arc_data

arc_data_pitch

_ utility_find_arc_length
I— utility_find_tum

— utility_find_tum

arc_data

_ arc_data_pitch

utility_find_arc_length
I— utility_find_tum

— utility_find_tum
arc_data

— arc_data_pitch
— utility_find_arc_length

•— utility_find_tum
utility_find_tum

Figure 3. Interpreter Kernel Function Call Hierarchy

(execute_block only)

This shows function calls from execute_block, defined in rs274kt.cc, to other kernel functions

(excluding utility_error_number and nml_log_error - see text). Canonical function calls are

not shown. The hierarchy of calls from other top-level kernel functions is shown in Figure 2.

26

NIST RS274KT Interpreter

nml_interp_block_delete
nml_interp_cIose reset_interp_win

nml_interp_execute — execute_block

_ read_line

— read_text

— write_g_codes
— write_in_codes

nml_interp_exit reset_interp_win
ninl_interp_halt

nnil_interp_init T— CANON_VECTOR::CANON_VECTOR
— GET_B_0R1GIN
— GET_LENGTH_UNITS
— GETJORIGIN
— GETJPLANE
— GET_PROGRAMJ)RIGIN
— INITJCANON
— io_wm_flood
— io_wm_mist
— \o_wm_speed
— io_wm_spindle
— io_wm_tool
— io_wm_tool_table
— NML_ROTPOSE::NML_ROTPOSE
— reset_iiiterp_win

— traj_wm_feed
— traj_wm_pos
— traj_wm_traverse
— write_g_codes
— write_m_codes

niiiI_interp_open

imiI_interp_optional_stop

ninl_interp_pause

ninl_interp_rea(l — read_line

— read_text

— reset_interp_wm

nml_interp_resume
nml_interp_run
iiml_interp_singie_block

iiml_interp_step

read_keyboard_line close_and_downcase

Figure 4. Interpreter Interface Function Call Hierarchy

This shows the hierarchy of function calls from interface functions in driver.cc, to:

1. kernel functions defined in rs274kt.cc (shown in ordinary typeface).

2. world modeling functions which are externally defined when the interpreter is integrated

with the rest of EMC, but are defined in driver.cc in the stand-alone (shown in italic)

3. other interface functions defined in rs274kt.cc (shown in boldface)

4. special functions (not canonical functions) defined in canon.cc (or, for

CANON_VECTOR::CANON_VECTOR, in canon.hh) (shown in bold italic).

Eight interface functions defined in rs274kt.cc but not used in the stand-alone are not shown.

27

NIST RS274KT Interpreter

main interpret_from_file — active_g_codes
— active_m_codes
— io_wm_init
— nml_interp_execute
— nml_interp_init
— nml_interp_open
— nml_interp_read
— read_setup_file
— read_tool_fUe
1— traj_wmjnit NMLJtOTPOSE::NML_ROTPOSE

— interpret_from_keyboard active_g_codes

active_m_codes

io_wm_init

nml_interp_execute

nml_interp_init

read_keyboard_line

read_setup_file

read_tooI_lile

traj_wm_init NML_ROTPOSE::NML_ROTPOSE

Figure 5. Interpreter Driver Function Call Hierarchy

(for stand-alone interpreter)

This shows the hierarchy of function calls from main in the stand-alone driver file, driver.cc,

to:

1. world modeling functions which are externally defined when the interpreter is integrated

with the rest of EMC, but are defined in driver.cc in the stand-alone (shown in italic)

2. other functions defined in driver.cc (shown in boldface)

3. interface functions defined in rs274kt.cc (shown in ordinary typeface).

A.2 Source Code Documentation

The source code is heavily documented. In general, for each function, four fields are given:

1. Returned Value - a description of possible returned values and the circumstances in which

particular values may be returned. In most kernel functions and many other functions, either OK
or ERROR may be returned.

2. Side Effects - a description of the important side effects (things other than the returned value) of

executing a function. Since the returned value of most functions is used to indicate error status,

the side effects of most functions are important.

3. Called By - a list of functions which call the function being documented.

4. Argument Values - a one-line description of the meaning of each argument to a function, placed

immediately after the declaration of the argument. This field is omitted if there are no arguments.

28

NIST RS274KT Interpreter

In addition to these four fields, most functions have a paragraph or two (up to several pages) of

discussion. Where a function implements an algorithm for geometric or numerical calculation (as

do many of the functions having to do with cutter radius compensation, for example), the

algorithm is described. Many citations to specific pages of the K&T manual are included in these

discussions.

29

NIST RS274KT Interpreter

Appendix B Functional Details

B.l Error Handling and Exiting

The interpreter detects and flags most kinds of illegal input. Unreadable input, missing words,

extra words, out-of-bounds numbers, and illegal combinations of words, for example, are all

detected. The interpreter does not check for axis overtravel or excessively high feeds or speeds,

however. The interpreter also does not detect situations where a legal command does something

unfortunate, such as machining a fixture.

Error handling and exiting are handled together by returning a status value of OK, EXIT, or

ERROR from each function where a reason for exiting may be detected or where there is

likelihood of error. One error message is generated for each error. There are three sets of error

messages:

1. input errors detected in the kernel or interface functions.

2. input errors detected in the stand-alone driver.

3. interpreter bugs detected in the kernel or interface functions (which should never occur).

The three sets of error messages are listed in the three subsections of Appendix D. Each message

is intended to explain the error that triggered it clearly enough that a machine operator or NC
programmer will be able to understand it and locate the error in the input. In the stand-alone

interpreter, the line of NC code that caused the error will be printed, if the code is coming from a

file. If the code is coming from the keyboard, it is already printed when the error is detected.

If an error occurs, or if it is time to exit, control is passed back up through the function call

hierarchy to some driver function (for the stand-alone) or to an EMC function (for the integrated

interpreter). Section 2.1.1 describes interpreter behavior in case of an error.

Since returned values are usually used as just described to handle the possibility of errors, an

alternative method of passing calculated values is required. In general, if function A needs a value

for variable V calculated by function B, this is handled by passing a pointer to V from A to B, and

B calculates and sets V.

Reporting errors detected in the kernel or interface functions (set 1 above) is handled entirely by a

compiler macro called ERROR_MACRO. The version of this macro currently in use must be a

macro, not a function, because it contains a “return” statement. All it does is find the error number

of the error, call the nml_log_error function, and return ERROR. The macro has a “name”

argument, which is not currently being used. That argument is for the name of the function

returning the error and was used in earlier versions of the interpreter. Different versions of

nml_log_error are used the stand-alone and integrated interpreters. In the stand-alone,

nml_log_error prints the error to stderr.

Where one function calls a second function that may detect and report an error, the first function

uses a compiler macro called ERROR_MACRO_PASS. All it does is return ERROR. It does not

need to report anything since the second function has already done the reporting.

Reporting errors which are interpreter bugs (set 3 above) is handled by the compiler macro

BUG_MACRO. This behaves the same as ERROR_MACRO. However, all the messages which

can be sent via the BUG_MACRO include the name of the function in which the bug occurred.

Reporting input errors in the driver is handled by the macro DRrVER_ERROR, which takes both

30

NIST RS274KT Interpreter

a message string and a value as arguments, so that it can identify the error more precisely. It also

prints messages to stderr and returns ERROR.

In the interpreter source code, error messages from the first and third sets appear both in the text

of functions and in an array of error messages. Error messages in the first set have indexes from 1

to 199, while those in the second set have indexes from 200 to 299. The array is used so that error

messages can be exported by number (the index number of the message in the array) to other parts

of the EMC system. The receiver must have a copy of the array, of course. The text of the

messages could be deleted from the source code, and only the array index used, but that would

delete important self-documentation from the source code. Keeping the array and the source code

consistent requires attention by the system programmer(s) if changes are made but has been

largely automated. The interpreter will report “unspecified error” if an error occurs for which the

message in the function does not match any message in the array. If “unspecified error” is ever

received, that exposes the internal inconsistency.

B.2 Cyclic Operation

In the integrated interpreter, input may be taken from a file or via manual data input (MDI) from

the controller console. In the stand-alone, input may be taken from a file or from the keyboard of

the computer running the interpreter. In all cases, two major phases of interpretation take place.

The first phase consists of reading a line of code, checking it somewhat, and storing the

information from the line in a structure called a “block”. The second phase, which is always

started by a call to nml_interp_execute, consists of examining the block, checking it further, and

making calls to canonical functions. With MDI input the nnil_interp_execute function triggers

both phases. With file input, in both the stand-alone and the integrated version, the first phase is

started by a call to nml_interp_read. In the stand-alone with keyboard input, the first phase is

started by a call to read_keyboard_line.

B.2.1 Read, Store, and Check

The software reads lines of RS274KT code one at a time. First the line is read into a buffer. Next,

any spaces not in comments are removed, and any upper case letters not in comments are changed

to lower case letters.

Then the buffer and a counter holding the index of the next character to be read are handed around

among a lot of functions named read_XXXX. All such functions read characters from the buffer

using the counter. They all reset the counter to point at the character in the buffer following the

last one used by the function. The first character read by most of these functions is expected to be

a member of some set of characters (often a specific single character), and each function checks

the first character.

Each line of code is stored until it has been executed in a reusable “block” structure, which has a

slot for every potential piece of information on the line. Each time a useful piece of information

has been extracted from the line, the information is put into the block.

The read_XXXX' functions do a lot of error detection, but they only look for errors which would

cause reading or storing to fail. After reading and storing is complete, more checking functions

(check_g_codes, check_m_codes, and check_other_codes) are run. These functions look for

logical errors, such as all axis words missing with a G code for motion in effect.

31

NIST RS274KT Interpreter

B.2.2 Execute

Once a block is built and checked, the block is executed by the execute_block function, which

calls one or more functions named convert_XXXX. In RS274KT, as in all dialects of RS274, a

line of code may specify several different things to do, such as moving from one place to another

along a straight line or arc, changing the feed rate, starting the spindle turning, etc. The order of

execution of items in a block is critical to safe and effective machine operation (it is a good idea to

start the spindle before cutting, for example), but is not specified clearly in the manual.

In the interpreter, items are executed in the order shown in Table 9 if they occur in the same block.

Many of the kernel functions rely implicitly on this order being used. The source code

documentation does not generally call out the fact that some other operation must have occurred

before the one being documented.

1. comment (includes message).

2. set feed mode (G93, G94— inverse time or per minute).

3. set feed rate (F).

4. set spindle speed (S).

5. select tool (T).

6. change tool (M6).

7. spindle on or off (M3, M4, M5).

8. coolant on or off (M7, M8, M9).

9. B-axis clamping on or off (M26, M27).

10. enable or disable overrides (M48, M49).

1 1. set tool length offset (P).

12. dwell (G4).

13. set active plane (G17, G18, G19).

14. cutter radius compensation on or off (G40, G41, G42)

15. set length units (G70, G71)

16. set distance mode (G90, G91).

17. reset position of the origin (G98, G99).

18. perform motion (GO to G3, G80 to G89).

19. stop (MO, Ml, M2, M30, M60).

Table 9. Order of Execution

B.3 Tool Change

A CHANGE_TOOL canonical command call is made when an M6 code occurs on a line. Since

this is a canonical command, it is not specialized to a particular machine. When the tool change is

complete, the following conditions should prevail.

• The spindle should be stopped.

• The tool that was selected (by a T word on the same line or on any line after the

previous tool change) should be in the spindle. The T number is an integer giving the

id of the tool, not its changer slot.

32

NIST RS274KT Interpreter

• If the selected tool was not in the spindle before the tool change, the tool that was in the

spindle (if there was one) should be in its changer slot.

• The coordinate axes should be stopped in the same absolute position they were in

before the tool change (but the spindle may be re-oriented).

• No other changes should be made.

The tool change may include axis motion while it is in progress. For any machine, this motion

must be predictable. It is up to the system programmers and operators to ensure that any such

motion will not damage the machine or the workpiece.

If the tooling data is incorrect, so that the tool that was supposed to be selected is not actually in

the expected slot, the tool change operation is not expected to be able to detect this, and no error

will necessarily result. If the machine is able to detect this error, however, it should be detected

and program execution should stop.

B.4 Tool Length Offsets

Tool length offsets are given as positive numbers in the tool table. Using a tool length offset is

programmed using P with the desired table index. Using no tool length offset is programmed

using PO [KT, pages 4-18, 4-19]. The P number is checked for being a non-negative integer when
it is read. The interpreter behaves as follows.

1. K a positive P number is programmed:

a. If the P number is the same as the slot number of the tool currently in the spindle, a

USE_TOOL_LENGTH_OFFSET(length) function call is made (where length is the value of the

tool length offset entry in the tool table whose index is the P number), tool_length_offset is reset

in the machine settings model, and the value of current_z in the model is adjusted.

b. If the P number is not the same as the slot number of the tool currently in the spindle, an error

message is printed, and ERROR is returned.

2. If PO is programmed, USE_TOOL_LENGTH_OFFSET(0.0) is called, tool_length_offset is

reset to 0.0 in the machine settings model, and the value of current_z in the model is adjusted.

B.5 Cutter Radius Compensation

The complete set of canonical functions includes functions which turn cutter radius

compensation^ on and off, so that cutter radius compensation can be performed in the controller

executing the canonical functions. In the RS274KT interpreter, however, these commands are not

used. Compensation is done by the interpreter and reflected in the output commands, which

continue to direct the motion of the center of the cutter tip. This simplifies the job of the motion

controller while making the job of the interpreter a little harder.

The algorithms for the first and last moves of cutter radius compensation used in the interpreter

differ from those in the manual [K&T, pages 4-21 to 4-61]. The behavior for the intermediate

moves is the same, except that some situations treated as errors in the interpreter are not treated as

errors in the manual. In particular, the interpreter treats concave comers and concave arcs into

which the tool will not fit as errors, while the manual does not. See Figure 6.

1. The term “cutter diameter compensation” is often used to mean the same thing.

33

NIST RS274KT Interpreter

concave comer - tool does not fit concave arc too small - tool does not fit

Figure 6. Two Cutter Radius Compensation Errors

In both examples, the line represents a tool path, and the circle represents the cross section of a

tool following the path using cutter radius compensation (tangent to one side of the path.)

The interpreter machine model keeps three data items for cutter radius compensation: the setting

itself (right, left, or off), program_x, and program_y. The last two represent the X and Y positions

which are given in the NC code while compensation is on. When compensation is off, these both

are set to a very small number (10‘^^) whose symbolic value (in a #define) is “unknown”. The

interpreter machine model uses the data items current_x and current_y to represent the position of

the center of the tool tip (in the currently active coordinate system) at all times.

The algorithm used for the first move when the first move is a straight line is to draw a straight

line from the destination point which is tangent to a circle whose center is at the current point and

whose radius is the radius of the tool. The destination point of the tool tip is then found as the

center of a circle of the same radius tangent to the tangent line at the destination point. This is

shown in Figure 7, which shows the constmction in the XY plane. If the programmed point is

inside the initial cross section of the tool (the circle on the left), an error is signalled.

path of tool tip

current point

destination point of tool tip

Second, construct this line to

fV. \ ^ i -^determine the destination pointW
,

Vi
/

First, construct this line.

programmed point

Figure 7. First Cutter Radius Compensation Move - Straight

If the first move after cutter radius compensation has been turned on is an arc, the arc which is

generated is derived from an auxiliary arc which has its center at the programmed center point,

passes through the programmed end point, and is tangent to the cutter at its current location. If the

auxiliary arc cannot be constructed, an error is signalled. The generated arc moves the tool so that

it stays tangent to the auxiliary arc throughout the move. This is shown in Figure 8.

34

NIST RS274KT Interpreter

If the first move is either a straight line or an arc with the XY plane selected, the Z axis may also

move at the same time. It will move linearly, as it does when cutter radius compensation is not

being used.

After the first move of cutter radius compensation, the interpreter keeps the tool tangent to the

programmed path on the appropriate side. If a convex comer is on the path, an arc is inserted to go

around the comer. The radius of the arc is the tool radius.

When cutter radius compensation is turned off, no special exit move takes place. The next move is

what it would have been if cutter radius compensation had never been turned on and the previous

move had placed the tool at its current position.

If the interpreter has been compiled with the “DEBUG” option on, the interpreter signals when

cutter radius compensation is turned on or off by calling the COMMENT canonical function with

a message to that effect.

B.6 Inverse Time Feed Rate

In the RS274KT language, two feed modes are recognized: units per minute [K&T, pages 3.8 -

3.9] and inverse time [K&T, pages 3.9 - 3.18]. Programming G94 starts the units per minute

mode. Programming G93 starts the inverse time mode.

In units per minute feed mode, an F word (no, not that F word; we vatdinfeedrate) is interpreted to

mean the tool tip should move at a certain number of inches per minute, millimeters per minute,

or degrees per minute, depending upon what length units are being used and which axis or axes

are moving.

In inverse time feed mode, an F word is interpreted to mean the move should be completed in [one

divided by the F word] minutes. For example, if the F word is 2.0, the move should be completed

in half a minute.

The interpreter handles the inverse time feed rate mode internally. The canonical functions have

no command for putting a machine into this mode. If the interpreter is compiled with DEBUG
#defined, when the interpreter converts a G93 or G94 command, it prints a comment saying it is

35

NIST RS274KT Interpreter

going into inverse time feed mode (if G93) or into units per minute feed mode (if G94).

As specified in the manual, when the interpreter is in inverse time feed mode, an F word must

appear on every line which has a motion. For each programmed motion (Gl, G2, or G3), the

interpreter calculates what the feed rate must be in units per minute to accomplish the move in the

specified time. A SET_FEED_RATE canonical command (which always means units per minute)

is output by the interpreter with this calculated rate. The calculation is: multiply the input F word

by the path length of tool tip motion appropriate to the given kind of motion.

Canned cycles G81 through G89 cannot be run in inverse time feed mode. The manual [K&T,

page 4.63] says the control should automatically be put into units per minute feed mode for

canned cycles, but in the interpreter, a change to the units per minute feed mode must be done by

an explicit G94 command. An error will occur in the interpreter if a canned cycle is called while

in inverse time feed mode.

Cutter radius compensation cannot be used in inverse time feed mode. An error will occur in the

interpreter if this is attempted in the input code.

Being in inverse time feed mode does not affect GO (rapid traverse) motions. It is still necessary

for FO to be in effect for GO to run without error.

36

NIST RS274KT Interpreter

Appendix C Transcript of a Session

This is a transcript of a session using the stand-alone interpreter with keyboard input. Characters

entered by the user are shown in boldface. All user input is followed by a carriage return not

shown here.

1} rs274kt
1 NO SET_FEED_REFERENCE(CANON_XYZ)
name of tool file => . . /tool/giii_all

name of setup file => setup/testl
READ => gl x3 yl f20.0
EXEC <-;

2 N ... SET_FEED_RATE(20 . 0000)

3 N ... STRAIGHT_FEED(3 . 0000, 1.0000, 0.0000, 0, 0.0000)
READ => g2 x3 g91 il.5 zO.5
EXEC <-;

4 N ... COMMENT ("interpreter : distance mode changed to incremental")
5N ... ARC_FEED(6. 0000, 1.0000, 4.5000, 1.0000, -1, 0.5000, 0,0.0000)
READ => (that was a helical arc)
EXEC <-;

6

N ... COMMENT ("that was a helical arc")
READ => t2

EXEC <-;

interpreter error 91: Unknown tool_id used
READ => m6 tl
EXEC <-;

7 N ... SELECT_TOOL{61)
8 N ... CHANGE_TOOL(61)
READ => nl5 g90 m3 p61 x7 y3 g81 rO.2 z-0.6676 s2000 m7
EXEC <-;

9 N15 SET_SPINDLE_SPEED (2000 . 0000)

10 N15 START_SPINDLE_CLOCKWISE (

)

11 N15 MIST_ON()
12 N15 USE_TOOL_LENGTH_OFFSET(0 . 0000)

13 N15 COMMENT ("interpreter : distance mode changed to absolute")
14 N15 STRAIGHT_TRAVERSE(7.0000, 3.0000, 0.5000, 0, 0.0000)
15 N15 STRAIGHT_TRAVERSE(7.0000, 3.0000, 0.2000, 0, 0.0000)
16 N15 STRAIGHT_FEED(7 . 0000, 3.0000, -0.6676, 0, 0.0000)
17 N15 STRAIGHT_TRAVERSE(7.0000, 3.0000, 0.2000, 0, 0.0000)
READ => m2
EXEC <-;

18 N ... STOP_SPINDLE_TURNING (

)

19 N ... MIST_OFF (

)

20 N ... PROGRAM_END (

)

READ => quit

37

NIST RS274KT Interpreter

Appendix D Error Messages

The error messages used throughout the interpreter are intended to be self-explanatory. There are

three categories of error message: interpreter kernel and interface input error messages, interpreter

kernel internal error messages, and interpreter driver input error messages. These are described in

Appendix D.l, Appendix D.2, and Appendix D.3, respectively. Each list is arranged

alphabetically (except the “unspecified error” message is first in Appendix D.l). Messages are in

boldface type. Following each message in Appendix D.l and Appendix D.3 is the name of the

function or functions in which it is found, printed in italics.

D.l Interpreter Kernel and Interface Input Error Messages

This is a list of all input error messages in the interpreter kernel and interface. Each message

describes some kind of error in the input to the interpreter. Each message has a number, which is

the index number of the message in the array of error messages in the source code; this number is

printed at the beginning of each line.

The “Unspecified error” error message should never appear. If it does, this means there is an error

message in the source code which has been left out of the error message array. If this happens,

please contact kramer@cme.nist.gov by email; include the message and describe the

circumstances in which it appeared.

0. Unspecified error see note above

1. B-axis value greater than 359.999 readj?

2. Bad character used read_one_item

3. Bad format real number read_real

4. Bad format unsigned integer read_integer_unsigned

5. Bad tool radius value with cutter radius comp . . . convert_arc_compl, convert_arc_comp2,

convert_straight_compl , convert_straight_comp2

6. Bad value for pitch arc_data_pitch

7. Cannot change origin with canned cycle convert_axis_ojfsets

8. Cannot change origin with cutter radius comp convert_axis_ojfsets

9. Cannot change units with cutter radius comp convertjengthjunits

10. Cannot do G1 with zero feed rate convertjstraight

11. Cannot do canned cycle in incremental distance mode convertjoycle

12. Cannot do canned cycle in inverse time feed mode convert_cycle

13. Cannot do canned cycle with zero feed rate convertjoycle

14. Cannot have concave corner with cutter radius comp convert_straight_comp2

15. Cannot make arc with zero feed rate convertjarc

16. Cannot perform G84 unless spindle is turning convertj:ycle_g84

17. Cannot put a B-axis command in a canned cycle check_other_codes

18. Cannot turn cutter radius comp on out of XY-plane. . . . convertjoutterjoompensationjon

19. Cannot turn cutter radius comp on when already on . . . convertjoutterjcompensationjon

20. Cannot use GO with cutter radius comp convertjstraight

21. Cannot use M25 in incremental distance mode checkjnjsodes

22. Cannot use XZ plane with cutter radius comp convert_set_plane

23. Cannot use YZ plane with cutter radius comp convertjset_plane

24. Cannot use a G code for motion with G4 check_g_codes

38

NIST RS274KT Interpreter

25. Cannot use a G code for motion with G98 check_g_codes
26. Cannot use axis commands with G4 check_g_codes

27. Cannot use inverse time feed with cutter radius comp convert_arc, convert_straight

28. Command too long close_and_downcase, nml_interp_execute

29. Concave comer with cutter radius comp convert_arc_comp2
30. Coordinate setting given with G80 convert_motion

31. Cutter gouging with cutter radius comp convert_straight_compl

32. D word missing with cutter radius comp on convert_cutter_compensation_on

33. D word on line with no cutter comp on (G41 or G42) command check_other_codes

34. Dwell time missing with G4 check_g_codes

35. E word missing in G83 or G87 canned cycle convertjcycle

36. E word on line with no X, Y, or Z check_other_codes

37. E word used without G83 or G87 check_other_codes

38. F word missing with inverse time G1 move convert_straight

39. F word missing with inverse time arc move . .convert_motion

40. Feed rate must be zero to use GO convert_straight

41. File ended with no stopping command given readjext

42. G code out of range read_g
43. 1 and J words missing for arc in XY-plane convert_arc

44. 1 and K words missing for arc in XZ-plane convert_arc

45. 1 word on line vdth no X, Y, or Z check_other_codes

46. J and K words missing for arc in YZ-plane convert_arc

47. J word on line with no X, Y, or Z check_other_codes

48. K word on line with no X, Y, or Z check_other_codes

49. Line number greater than 99999 read_line_number

50. M code greater than 99 read_m

51. Multiple B words on one line readjb

52. Multiple D words on one line read_d

53. Multiple E word settings on one line readjielta

54. Multiple F words on one line read_f

55. Multiple I words on one line readj

56. Multiple J words on one line readJ
57. Multiple K words on one line read_k

58. Multiple P word tool length offsets on one line read_tool_length_ojfset

59. Multiple R words on one line read_r

60. Multiple S word spindle speed settings on one line read_spindle_speed

61. Multiple T words on one line read_tool_id

62. Multiple X words on one line read_x

63. Multiple Y words on one line read_y

64. Multiple Z words on one line read_z

65. Must use GO with M25 check_m_codes

66. Negative F word found readj"

67. Negative or zero I word for arc in YZ-plane convert_arc

68. Negative or zero J word for arc in XZ-plane convert_arc

69. Negative or zero K word for arc in XY-plane convert_arc

70. Negative spindle speed found read_spindle_speed

39

NIST RS274KT Interpreter

71. Nested comment found

72. No digits found while reading number
73. Null missing after newline

74. Percent sign not first item on first line

75. R clearance plane unspecified in canned cycle

76. R value less than Z value in canned cycle

77. R word on line with no X, Y, or Z
78. R word used outside a canned cycle

79. Radius to end of arc differs from radius to start of arc

80. Too many G codes on line

81. Too many M codes on line

82. Tool index out of bounds

83. Tool offset index differs from current slot

84. Tool radius not less than arc radius with cutter radius comp
85. Two G codes used from same modal group

86. Two M codes used from same modal group

87. Unable to open file

88. Unclosed comment found

89. Unknown G code used

90. Unknown M code used

91. Unknown tool_id used

92. X and Y words missing for arc in XY-plane

93. X and Z words missing for arc in XZ-plane

94. X missing for arc with I word in YZ-plane

95. X, Y, Z, and B words all missing with GO or G1
96. Y and Z words missing for arc in YZ-plane

97. Y missing for arc with J word in XZ-plane

98. Z missing for arc with K word in XY-plane

99. Z value unspecified in canned cycle

100. Zero or negative E word found

.... close_and_downcase

readjreal

close_and_downcase

nml_interp_open

convertjcycle

convertjoycle

check_other_codes

check_other_codes

arc_data, arc_data_comp

check__g_codes

check_m_codes

convert_tool_length_ojfset

convert_tool_length_ojfset

convert_arc_comp2

read_g

readjn

nml_interp_open

.... close_and_downcase

read_g

readjn

convertJool_select

convertjarc

convertjarc

convertjarc

convertjstraight

convert_arc

convert_arc

convertjarc

convert_cycle

readjdelta

40

NIST RS274KT Interpreter

D.2 Interpreter Kernel Internal Error Messages

The following error messages should never appear but are provided as a check on the internal

workings of the interpreter kernel. Each message has a number, which is the index number of the

message in the array of error messages in the source code; this number is printed here at the

beginning of each line. The name of the function in which the error has occurred is part of each

message. The appearance of one of these means there is a bug in the source code for the

interpreter. If one of these error messages ever appears, please contact kramer@cme.nist.gov by

email; include the message and describe the circumstances in which it appeared.

200. B_turn setting not -1, 0, or 1 in utility_enhance_biock

201. Code is not GO or G1 in convert_straight

202. Code is not GO to G3 or G80 to G89 in convert_niotion

203. Code is not G17, G18, or G19 in convert_set_plane

204. Code is not G2 or G3 in arc_data

205. Code is not G2 or G3 in arc_data_conip

206. Code is not G40, G41, or G42 in convert_cutter_conipensation

207. Code is not G70 or G71 in convert_length_units

208. Code is not G90 or G91 in convert_distance_mode

209. Code is not G93 or G94 in convert_feed_mode

210. Code is not G98 or G99 in convert_axis_offset

211. Code is not MO, Ml, M2, M30 or M60 in convert_stop

212. Cycle code not G81 to G89 in convert_cycle

213. Plane is not XY, YZ, or XZ in convert_arc

214. Read_b should not have been called

215. Read_comment should not have been called

216. Read_d should not have been called

217. Read_delta should not have been called

218. Read_f should not have been called

219. Read_g should not have been called

220. Read_i should not have been called

221. ReadJ should not have been called

222. Read_k should not have been called

223. Read_line_number should not have been called

224. Read_m should not have been called

225. Read_r should not have been called

226. Read_spindle_speed should not have been called

227. Read_tool_id should not have been called

228. Read_tooUength_offset should not have been called

229. Read_x should not have been called

230. Read_y should not have been called

231. Read_z should not have been called

232. Side fails to be right or left in convert_straight_compl

233. Side fails to be right or left in convert_straight_conip2

234. Sscanf failure in read_integer_unsigned

235. Sscanf failure in read_real

41

NIST RS274KT Interpreter

D.3 Interpreter Driver Input Error Messages

The following error messages may be printed by the stand-alone interpreter but not the integrated

interpreter. Each message describes an error in the input to the stand-alone interpreter that is not

an interpreter kernel error. The messages originate in the source code for the stand-alone

interpreter driver. A word in bold italics stands for a number or word that will differ according the

exact nature of the error. The error messages are not kept in an array.

1. Bad input line "textjine" in setup file read_setup_file

2. Bad input line "textjine" in tool file read_toolJjle

3. Bad setup file format read_setup_Jile

4. Bad tool file format readjtooljile

5. Bad value given_yalue for block_delete in setup file readjsetupjile

6. Bad value given_yalue for cutter_radius_comp in setup file read_setupjile

7. Bad value given_value for distance_mode in setup file read_setup_Jile

8. Bad value given_value for feed_mode in setup file read_setupjile

9. Bad value given_yalue for flood in setup file read_setupjile

10. Bad value given_value for length_units in setup file readjsetupjile

11. Bad value givenjvalue for mist in setup file read_setupJle
12. Bad value givenjvalue for plane in setup file read_setupjle

13. Bad value givenjvalue for speed_feed_mode in setup file readjsetupJle
14. Bad value givenjvalue for spindle_tuming in setup file readjsetupJle
15. Cannot openfilejiame readjsetupJle, readjoolJle
16. Unknown attribute attribute_name in setup file readjsetupJle
17. Usage "rs274kt" or "rs274kt filename" or "rs274kt filename continue" main

42

NIST RS274KT Interpreter

Appendix E Production Rules for Line Grammar and Syntax

The following is a production rule definition of what the RS274KT interpreter recognizes as valid

combinations of symbols which form a readable line (the top of this production hierarchy). The
productions are arranged alphabetically to make connections easy to trace.

The productions are intended to be unambiguous. That is, no permissible line of code can be

interpreted more than one way. To make the productions below entirely unambiguous, it is

implicit that if a string of characters that can meet the requirements of an ordinary comment also

can be interpreted as a message, that string is a message and not an ordinary comment.

The term comment_character is used in the productions but not defined there. A comment
character is any printable character plus space and tab, except for a left parenthesis or right

parenthesis. This implies comments cannot be nested.

It is implicit in the production rules that, except inside parentheses, space and tab characters may
be ignored.

These production rules do not include constraints implied by the semantics of the interpreter.

Most of the constraints are in terms of combinations of words (as defined below). Many lines of

code that are readable under these production rules will not be executable because they violate

constraints. For example G200 would be a valid G word under the production rules, but it does not

satisfy the constraint that the unsigned integer after the G may not be 200. Any constraint

violation will be detected by the interpreter and will result in an error message. The error

messages are intended to describe the constraint which has been violated and are included in

Appendix D

In Section 5.2 the term “number” is defined. That term is defined in the productions as either

“unsigned_integer” or “real_number”, but “number” is not used by any other rule. The RS274KT
language does not use signed integers.

E.l Production Language

The symbols in the productions are mostly standard syntax notation. Meanings of the symbols

follow.

= The symbol on the left of the equal sign is equivalent to the expression on the right

+ followed by

I or

end of production (a production may have several lines)

[] zero or one of the expression inside square brackets may occur

{ } zero to many of the expression inside curly braces may occur

() exactly one of the expression inside parentheses must occur

43

NIST RS274KT Interpreter

E.2 Productions

Any term in this subsection that is used on the right of an equal sign but is not defined in this

subsection (i.e., does not appear on the left in any definition) is defined m the next subsection in

terms of characters.

argument_word = (letter_b I letter_e I letter_i I letterJ I letter_k I letter_r I letter_x I

letter_y I letter_z) + real_number .

comment = message I ordinary_comment

.

comment_character = see explanation above .

digit = zero I one I two I three I four I five I six I seven I eight I nine .

g_word = letter_g + unsigned_integer .

letter_b = big_b I little_b .

letter_d = big_d I little_d .

letter_e = big_e I little_e .

letter_f = big_f I little_f

.

letter_g = big_g I little_g .

letter_i = big_i I little_i

.

letterJ = bigJ I littleJ .

letter_k = big_k I little_k .

letter_m = big_m I little_m .

letter_n = big_n I little_n .

letter_p = big_p I little_p .

letter_r = big_r I little_r .

letter_s = big_s I little_s .

letter_t = big_t I little_t

.

letter_x = big_x I little_x .

letter_y = big_y I little_y .

letter_z = big_z I little_z .

line = [block_delete] + [line_number] + {segment} + end_of_line .

line_number = letter_n + digit + [digit] + [digit] + [digit] + [digit]

.

message = left_parenthesis + {white_space} + letter_m + { white_space } + letter_s +

{white_space} + letter_g + {white_space} + comma + {comment_character} +

right_parenthesis .

m_word = letter_m + unsigned_integer .

number = real_number I unsigned_integer .

ordinary_comment = left_parenthesis + {comment_character} + right_parenthesis .

rate_word = (letter_f I letter_s) + real_number .

real_number = [plus I minus] +

((digit + { digit
} + [decimal_point] + {digit}) I (decimal_point + digit + {digit}))

.

segment = word I comment

.

tooLword = (letter_d I letter_p I letter_t) + unsigned_integer

unsigned_integer = digit + { digit } .

white_space = { tab I space }

word = g_word I m_word I tool_word I rate_word I argument_word .

44

NIST RS274KT Interpreter

E.3 Production Tokens in Terms of Characters

We have omitted the letters and digits in the list below, since they are all the obvious single

characters. For example, one is ‘1’, big_b is ‘B’, and little_b is ‘b’. The list should be used as if

these obvious items were included. Note that not every letter of the alphabet is included (A, C, H,

L, O, Q, U, V, andW are omitted).

block_delete = 7’

comma =

decimal_point =

end_of_line = ‘
’ (non-printable newline character)

left_parenthesis = ‘(’

minus =

plus = ‘+’

right_parenthesis = ‘)’

space = ‘
’ (non-printable space character)

tab = ‘
’ (non-printable tab character)

45

NIST RS274KT Interpreter

Appendix F Setup File Format

The format of a setup file is shown in Table 10. A setup file is used by giving its name when
prompted to do so when the interpreter starts up, as described in Section 4. 1

.

The file consists of any number of header lines, followed by one blank line, followed by any

number of lines of data. The interpreter just skips over the header lines. It is important that there

be exactly one blank line (with no spaces or tabs, even) before the data. The header line shown in

Table 10 describes the data columns, so it is suggested (but not required) that that line always be

included in the header.

The interpreter reads only the first two columns of the table. The third column, “Other Possible

Values,” is included here for information.

Each line of the file contains the name of an attribute in the first column and the value to which

that attribute should be set in the second column. Attribute names must be spelled exactly as

shown in Table 10 in lower case letters. Where the value is shown in upper case letters in the table,

upper case letters must be used, and the alternative values are also required to be in upper case

letters. The same attribute name should not be used twice, but the interpreter does not check that.

If any attribute name not given in the table is used, an error will result.

The lines do not have to be in any particular order. Switching the order of lines has no effect on

the interpreter or on how any NC program will be executed (unless the same attribute is used on

two or more lines, which should not normally be done, in which case the data for only the last

such line will persist).

46

NIST RS274KT Interpreter

Attribute Value Other Possible Values

axis_offset_b 0.0 any real number
axis_offset_x 0.0 any real number
axis_offset_y 0.0 any real number
axis_offset_z 0.0 any real number
block_delete ON OFF
current_b 0.0 any real number
current_x 0.0 any real number
current_y 0.0 any real number
current_z 0.0 any real number
cutter_radius_comp OFF LEFT, RIGHT
cycle_e 0.1 any positive real number
cycle_r 0.0 any real number
cycle_z 0.0 any real number not less than cycle_r

distance_mode ABSOLUTE INCREMENTAL
feed_mode PER.MINUTE INVERSE_TIME
feed_rate 5.0 any positive real number
flood OFF ON
length_units MILLIMETERS INCHES
mist OFF ON
motion_mode 80 0, 1 ,2,3,8 1 ,82,83,84,85,86,97,88,89

plane XY YZ,ZX
slot_for_length_offset 1 any unsigned integer less than 69

slot_for_radius_comp 1 any unsigned integer less than 69

slot_in_use 1 any unsigned integer less than 69

slot_selected 1 any unsigned integer less than 69

speed_feed_mode INDEPENDENT SYNCHED
spindle_speed 1000.0 any non-negative real number

spindle_tuming STOPPED CLOCKWISE, COUNTERCLOCKWISE
tool_length_offset 0.0 any non-negative real number

traverse_rate 199.0 any positive real number

Table 10. Sample Setup File

47

NIST RS274KT Interpreter

Appendix G Tool File Format

The format of a tool file is shown in Table 11. A tool file is used by giving its name when
prompted to do so when the interpreter starts up, as described in Section 4.1.

The file consists of any number of header lines, followed by one blank line, followed by any

number of lines of data. The interpreter just skips over the header lines. It is important that there

be exactly one blank line (with no spaces or tabs, even) before the data. The header line shown in

Table 1 1 describes the data columns, so it is suggested (but not required) that that line always be

included in the header.

Each data line of the file contains the data for one tool. Each line has six entries, the first four of

which are required, and the last two of which are optional. It makes reading easier if the entries

are arranged in columns, as shown in the table, but the only format requirement is that there be at

least one space or tab after each of the first four entries on a line. The meanings of the columns

and the type of data to be put in each are as follows.

The “POCKET” column contains an unsigned integer which represents the pocket number (slot

number) of the tool changer pocket in which the tool is placed. The entries in this column must all

be different.

The “FMS” column contains an unsigned integer which represents a code number for the tool.

The user may use any code for any tool, as long as the codes are unsigned integers. It is legal, but

usually not a good idea, to have two tools with the same code number. Tools are selected by using

this number.

The “TLO” column contains a real number which represents the tool length offset. This number

will be used if tool length offsets are being used and this pocket is selected. This is normally a

positive real number, but it may be zero or any other number if it is never to be used.

The “DIAM” column contains a real number which represents the diameter of the tool. This

number is used only if tool diameter compensation is turned on using this pocket. This is normally

a positive real number, but it may be zero or any other number if it is never to be used.

The “HOLDER” column may optionally be used to describe the tool holder. Any type of

description is OK. This column is for the benefit of human readers only.

The “TOOL DESCRIPTION” column may optionally be used to describe the tool. Any type of

description is OK. This colunm is for the benefit of human readers only.

The interpreter only reads data from the first four columns of each line. The rest of the line is read

but ignored.

The units used for the length and diameter of the tool may be in either millimeters or inches, but if

the data is used by an NC program, the program must call out the correct G code (G70 or G7 1) for

those units before the data is used. The table shows a mixture of types of units.

The lines do not have to be in any particular order. Switching the order of lines has no effect on

the interpreter or on how any NC program will be executed (unless the same slot number is used

on two or more lines, which should not normally be done, in which case the data for only the last

such line will persist).

48

NIST RS274KT Inteq?reter

POCKET FMS TLO DIAM HOLDER TOOL DESCRIPTION

1 1 1.0 0.25 14141 0.25” end mill

20 1419 4.299 1.0 0 1” carbide end mill

21 1025 8.34 0.5 drill chuck 1/2” spot drill short

32 1764 296.515 8.5 0 8.5mm drill

41 1237 228.360 10.0 0 10mm X 1.25 tap

60 71117 0 0 0 large chuck

Table 11. Sample Tool File

49

NIST RS274KT Interpreter

